
888 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

SetRkNN: Efficient and Privacy-Preserving Set
Reverse kNN Query in Cloud

Yandong Zheng , Member, IEEE, Rongxing Lu , Fellow, IEEE, Hui Zhu , Senior Member, IEEE,

Songnian Zhang, Yunguo Guan , Jun Shao , Senior Member, IEEE, Fengwei Wang, Member, IEEE,

and Hui Li , Member, IEEE

Abstract— The advance of cloud computing has driven a new
paradigm of outsourcing large-scale data and data-driven services
to public clouds. Due to the increased awareness of privacy
protection, many studies have focused on addressing security
and privacy issues in outsourced query services. Although many
privacy-preserving schemes have been proposed for various query
types, the set reverse k nearest neighbors (RkNN) query is still an
unexplored area. Even if some existing schemes can be adapted
to achieve privacy-preserving set RkNN queries, they will suffer
from linear search efficiency. As a steppingstone, in this paper,
we propose an efficient and privacy-preserving set RkNN query
scheme over encrypted data with sublinear query efficiency.
Specifically, we first design an inverted prefix index to organize
the set dataset and propose an algorithm to traverse the index
with sublinear search efficiency. Then, we propose two oblivious
data comparison protocols based on a symmetric homomorphic
encryption (SHE) scheme and design the private filter/refinement
protocols to preserve the privacy of index searching. After that,
we propose an access pattern privacy-preserving set RkNN query
scheme by using private filter/refinement protocols. Rigorous
security analysis demonstrates that our scheme can protect data
privacy and access pattern privacy. Experimental results indicate
that our scheme is more efficient than the available naive solution
in terms of computational costs and communication overheads.

Manuscript received 19 May 2022; revised 25 September 2022 and
5 November 2022; accepted 11 December 2022. Date of publication
22 December 2022; date of current version 30 December 2022. This work was
supported in part by the National Key Research and Development Program
of China under Grant 2022YFB3103400; in part by the Natural Sciences
and Engineering Research Council of Canada (NSERC) Discovery Grants
(04009, RGPIN-2022-03244); in part by NSFC under Grant 61972304, Grant
61932015, and Grant U22B2030; in part by the China Postdoctoral Science
Foundation under Grant 2022M722498; in part by the Zhejiang Natural
Science Foundation (ZJNSF) under Grant LQ22F020022, in part by the
OPPO Research Fund; and in part by the Henan Key Laboratory of Network
Cryptography Technology under Grant LNCT2022-A18. The associate editor
coordinating the review of this manuscript and approving it for publication was
Dr. Zekeriya Erkin. (Corresponding author: Hui Zhu.)

Yandong Zheng is with the State Key Laboratory of Integrated Services
Networks, Xidian University, Xi’an 710071, China, and also with the Henan
Key Laboratory of Network Cryptography Technology, Zhengzhou 450000,
China (e-mail: zhengyandong@xidian.edu.cn).

Rongxing Lu, Songnian Zhang, and Yunguo Guan are with the Faculty of
Computer Science, University of New Brunswick, Fredericton, NB E3B 5A3,
Canada (e-mail: rlu1@unb.ca; szhang17@unb.ca; yguan4@unb.ca).

Hui Zhu, Fengwei Wang, and Hui Li are with the State Key
Laboratory of Integrated Services Networks, Xidian University, Xi’an
710071, China (e-mail: zhuhui@xidian.edu.cn; wangfengwei@xidian.edu.cn;
lihui@mail.xidian.edu.cn).

Jun Shao is with the School of Computer and Information Engineer-
ing, Zhejiang Gongshang University, Hangzhou 310018, China (e-mail:
chn.junshao@gmail.com).

Digital Object Identifier 10.1109/TIFS.2022.3231785

Index Terms— Set RkNN, encrypted data, inverted prefix filter
index, homomorphic encryption, access pattern privacy.

I. INTRODUCTION

LOW maintenance costs and high computing power advan-
tages of cloud computing have inspired organizations to

outsource large-scale data and data-driven services to public
clouds. However, cloud servers usually belong to third-party
enterprises and are not fully trusted. Direct outsourcing plain-
text data to clouds will unavoidably expose the sensitive
information of the data and may even threaten relevant per-
sonnel’s life and property safety [1], [2]. Consequently, many
studies have been devoted to addressing security and privacy
issues for outsourced data while guaranteeing data availability.
An effective approach is to leverage encryption techniques to
encrypt data and design trapdoors to support data availability.

Many studies have been proposed for various privacy-
preserving query types, including k nearest neighbor (kNN)
query [3], [4], [5], skyline query [6], aggregation query
[7], and predication query [8], etc. However, the reverse
kNN (RkNN) query only receives limited attention, yet it
complements the kNN query and plays a vital role in taxi
dispatch and the targeted push of media information. Essen-
tially, the kNN query retrieves top-k records nearest to query
records and can further mine a wealth of information from
these nearest neighbors. While the RkNN query retrieves all
records regarding query records as their k nearest neighbors.
Meanwhile, RkNN queries have different categories based
on their target data types, e.g., location based RkNN query
[9], [10], [11], road network based RkNN query [12], multi-
dimensional data based RkNN query [13], etc. In this work,
we target set records and study set RkNN queries, where the
similarity between two sets is measured by Jaccard similarity.

Currently, many studies have paid attention to privacy-aware
location based RkNN queries. As the first initiative, Du et
al. [9] proposed a data blurring method to hide dataset records
and query records into rectangle regions and then designed
a “Voronoi Cell for Regions” structure to index the data
for improving RkNN query efficiency. However, it trades off
the query accuracy for data privacy. Lin et al. [10] used a
private information retrieval (PIR) technique to retrieve query
results and enhanced the query efficiency by using RkNN-HG
and RkNN-HRT indexes, respectively. Unfortunately, it does

1556-6021 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:56:10 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-4534-5670
https://orcid.org/0000-0001-5720-0941
https://orcid.org/0000-0002-5853-633X
https://orcid.org/0000-0002-3965-3389
https://orcid.org/0000-0001-8352-0973
https://orcid.org/0000-0001-8310-7169


ZHENG et al.: SetRkNN: EFFICIENT AND PRIVACY-PRESERVING SET REVERSE kNN QUERY IN CLOUD 889

not preserve the dataset’s privacy. Li et al. [11] inte-
grated Delaunay triangulation, structured encryption, and a
reference-locked encryption scheme to design a secure RkNN
query scheme, which can protect both data privacy and query
privacy. Nevertheless, the location based RkNN query schemes
in [9], [10], and [11] are not applicable to set RkNN queries.
Similarly, the RkNN query schemes in [12] and [13] are
designed for road networks and multi-dimensional data with
specialized indexes. It is nontrivial to adapt them to handle set
RkNN queries. In addition, many existing privacy-preserving
Jaccard similarity computation and kNN query schemes [14],
[15], [16], [17], [18], [19], [20], [21] (More details will be
discussed in Section VIII) are available to check whether a data
record satisfies an RkNN query request. However, using such
schemes to achieve RkNN queries has to access all dataset
records and will suffer from linear search efficiency. Therefore,
attaining sub-linear search efficiency in set RkNN queries over
encrypted data is still an unexplored area that needs to be
studied urgently.

As a steppingstone, in this paper, we propose an efficient
and privacy-preserving set RkNN query (SetRkNN) scheme
over encrypted data with sublinear query efficiency. The main
idea of our scheme is to build an inverted prefix based on the
prefix and length filters of set similarity computation. Roughly,
if two sets have high similarity, their prefix elements should
have an intersection when all elements in them are sorted in a
global order. Meanwhile, they should also be similar in size.
The index reduces our search scope to a smaller collection
of candidate sets and thus brings our scheme to sublinear
query efficiency. After that, we focus on protecting the data
privacy of inverted prefix index based set RkNN queries.
We first design two oblivious data comparison protocols in
the two-server model based on an efficient symmetric homo-
morphic encryption (SHE) and its public-key version [19],
[22], [23]. Based upon these two protocols, we further design
a private filter protocol and a private refinement protocol,
which are respectively employed for searching an entry of
the inverted index and verifying whether a candidate set
satisfies the query request or not. Subsequently, we propose
our efficient and privacy-preserving set RkNN query scheme
over encrypted data based on the private filter/refinement
protocols. Since the access pattern leakage may violate data
privacy [24], [25], we also consider the access pattern privacy.
Because protecting access pattern privacy of the whole dataset
is unnecessary and outrageously expensive [26], our scheme
introduces the security level of t-access pattern unlinkability,
which guarantees that one record in the index and dataset is
indistinguishably accessed with (t − 1) records. Specifically,
our contributions are four folds as follows.
• First, we design an inverted prefix index to organize the set

dataset by leveraging prefix and length filters of set similarity
computation. Then, we elaborately propose an algorithm to
efficiently perform set RkNN queries over the index, which
reaches the sublinear search efficiency.
• Second, we propose two oblivious data comparison

protocols, i.e., an oblivious less than comparison (OLTC)
protocol and an oblivious greater than comparison (OGTC)
protocol based on an SHE scheme and its public-key version.
Then, we design the private filter/refinement protocols to

Fig. 1. Set RkNN query model in our system.

protect the privacy of index searching and candidate records
verification.
• Third, we propose our SetRkNN scheme based on private

filter/refinement protocols. To efficiently protect access pattern
privacy, we introduce the security level of t-access pattern
unlinkability and carefully design our scheme to guarantee the
t-access pattern unlinkability in every aspect of our scheme.
• Finally, we rigorously prove the security of our scheme

in a simulation-based real/ideal worlds model. The results
show that our scheme can protect data privacy and achieve
t-access pattern unlinkability. In addition, we experimentally
evaluate the performance of our scheme. The results show
that our scheme is more efficient than the naive solution in
computational costs and communication overheads.

The remainder of this paper is organized as follows.
In Section II, we introduce our system model and security
model. Then, we describe some preliminaries in Section III
and propose some building blocks in Section IV. In Section V,
we present our scheme, followed by security analysis and
performance evaluation in Section VI and Section VII,
respectively. In Section VIII, we present some related work.
Finally, we draw our conclusion in Section IX.

II. SYSTEM MODEL AND SECURITY MODEL

In this section, we formalize the system model and security
model considered in our work.

A. System Model

Our system focuses on a set RkNN query model in the
outsourced scenario with three types of participants, including
a data owner, two cloud servers, and many query users,
as shown in Fig. 1.

1) Data Owner: The data owner has a set dataset S =
{(idi , Si )}ni=1 with n records, where idi is the identity of Si .
Without loss of generality, we assume that all elements in
each set Si ∈ S are integers [27]. To fully exploit the benefit
of the dataset, the data owner offers set RkNN query services
over S to users in need. Restricted by computing and storage
resources, the data owner outsources its dataset S to two cloud
servers and hires the servers to offer set RkNN query services

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:56:10 UTC from IEEE Xplore.  Restrictions apply. 



890 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

to users on behalf of itself. The data owner will build an
index for the dataset to improve the query efficiency. Then,
it encrypts the index and the dataset before outsourcing them
to the cloud to protect data privacy.

2) Two Cloud Servers: Two cloud severs, denoted as S1
and S2, have rich computing and storage resources. They
collaboratively process set RkNN query requests received from
query users. Let (Q, k) be a set RkNN query request, where
Q is a query set. On receiving (Q, k), S1 and S2 search on the
outsourced dataset for sets regarding Q as their kNN. Finally,
the cloud servers return the result to the query user.

3) Query Users: The system offers set RkNN query services
for multiple query users. The data owner will authorize users
in their registration phase to ensure that only legitimate users
can enjoy query services.

B. Security Model

Since the data owner is the creator of our entire system,
we assume that it is trusted. For the query users, since the
data owner has authorized them, we consider that they are
honest, i.e., sincerely launch set RkNN query requests to
cloud servers based on our scheme. For the two servers, since
third parties run them, we assume that they are honest-but-
curious. They faithfully offer query services to users but may
be curious about some private information to them, including
the plaintexts of sets in the outsourced dataset, in the query
requests, and even in the query results; and the access pattern
of the outsourced data. Meanwhile, we assume that there is no
collusion between two servers. The assumption is reasonable
and widely acknowledged in the security community [28],
[29] because different cloud service providers are likely to
have conflicts of interest. Since our work focuses on privacy
preservation, other active attacks are beyond the scope of this
work and will be discussed in future. Note that, as discussed
in [30], many systems like ours can later be enhanced to
resist malicious adversaries using verifiable secret sharing and
zero knowledge proofs, if the steep increase in computational
complexity is acceptable.

III. PRELIMINARIES

In this section, we recall the Jaccard similarity, define
set RkNN query, review a symmetric homomorphic encryp-
tion (SHE) scheme and its public-key version (PHE), and
introduce the security level of t-access pattern unlinkability.

A. Jaccard Similarity and Set RkNN Query

This section reviews Jaccard similarity and two filter strate-
gies widely used for Jaccard-based set similarity queries, and
formalizes the definition of the set RkNN query.

Definition 1 (Jaccard Similarity): The Jaccard similarity

between two sets Si and Sj is defined as J (Si , Sj ) = |Si∩S j |
|Si∪S j | .

Based on the definition, two filter strategies are widely used
to improve the Jaccard based set similarity query, including a
prefix filter and a length filter.

Theorem 1 (Prefix Filter [31]): Let Si and Sj be two sets,
and their elements are placed in a global order (e.g., frequency
order). If J (Si , Sj ) ≥ τ , we have ψ(Si ) ∩ ψ(Sj ) �= ∅, where

ψ(Si ) (resp. ψ(Sj )) denotes the first �(1− τ )|Si |	 + 1 (resp.
�(1− τ )|Sj |	 + 1) elements of Si (resp. Sj ).

Theorem 2 (Length Filter [31]): Given two sets Si and Sj ,
if J (Si , Sj ) ≥ τ , we have τ |Sj | ≤ |Si | ≤ |S j |

τ .
Definition 2 (Set RkNN Query): Suppose that S = {(idi ,

Si )}ni=1 is a set dataset, and kNN(Si ) is the k-th nearest
neighbor of Si over S. Let (Q, k) denote a set RkNN query
request, where Q is a query set. The query result of (Q, k)
will be R = {idi |J (Si , Q) ≥ J (Si , kNN(Si )); Si ∈ S}.

B. SHE Scheme and PHE Scheme

This section introduces the SHE scheme and its public-key
version (PHE).

1) SHE Scheme: The SHE scheme is a homomorphic
encryption scheme, which was proposed by Mahdikhani et al.
[22]. It relies on a new assumption referred to the
(L,p)-based decision problem. In Section VI-A, we show how
to instantiate it with a parameter set that withstands three
known attacks. In this section, we focus on presenting the SHE
scheme, including key generation, encryption, and decryption.
Its security proof will be introduced in Section VI.
• SHE.KeyGen(kM,kr,kL,kp,kq): On input security

parameters kM, kr, kL, kp, and kq with kM � kL,
the key generation algorithm sets the message space to be
M = {m|m ∈ [−2kM−1, 2kM−1)}. Then, it randomly chooses
a kL-bit number L and a kp-bit prime number p. After
that, it randomly chooses a set of kp-bit prime numbers

{qi |1 ≤ i ≤ �kqkp }, sets q = �� kqkp 
i=1 qi , and computes

N = p ∗q. Finally, the algorithm outputs the public parameter
pp = {kM,kr,kL,kp,kq,N}, the secret key sk = {p,L},
and the message space M.
• SHE.Enc(m,sk): A message m is encrypted by the secret

key sk as [[m]] = (r ∗ L + m)(1 + r� ∗ p) mod N, where
r ∈ {0, 1}kr and r� ∈ {0, 1}kq are random numbers.
• SHE.Dec(sk, [[m]]): Given a ciphertext [[m]], the plaintext

m is recovered by i) calculating m� = ([[m]] mod p) mod L;
and ii) setting m = m� if m� < L

2 and m = m� − L otherwise.
The SHE scheme allows homomorphic addition and multi-

plication over ciphertexts, including
• Add-I: ([[m1]] + [[m2]]) mod N→ [[m1 + m2]];
• Add-II: ([[m1]] + m2) mod N→ [[m1 + m2]];
• Multiply-I: [[m1]] ∗ [[m2]] mod N→ [[m1 ∗ m2]];
• Multiply-II: [[m1]] ∗ m2 mod N→ [[m1 ∗ m2]] (m2 > 0).
The SHE scheme is a leveled homomorphic encryption

scheme. Its multiplicative depth over ciphertexts is limited by
the security parameters and is up to � kp

kr+kL 	 − 1.
2) PHE Scheme: The SHE scheme is a symmetric

encryption scheme. Based on its homomorphic properties,
we can construct a public-key homomorphic encryption (PHE)
scheme, which has different key generation and encryption
algorithms from the SHE scheme, as described below.
• PHE.KeyGen(kM,kr,kL,kp,kq): On input security

parameters kM, kr, kL, kp, and kq, the key generation
algorithm first generates the keys and message space of the
SHE scheme as

pp,sk,M← SHE.KeyGen(kM,kr,kL,kp,kq). (1)

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:56:10 UTC from IEEE Xplore.  Restrictions apply. 



ZHENG et al.: SetRkNN: EFFICIENT AND PRIVACY-PRESERVING SET REVERSE kNN QUERY IN CLOUD 891

Then, it generates two ciphertexts of zero as

[[0]] ← SHE.Enc(0,sk) and [[0]]�←SHE.Enc(0,sk). (2)

Finally, it outputs the public key pk = {pp, [[0]], [[0]]�}, the
secret key sk, and the message space M.
• PHE.Enc(m,pk): A message m is encrypted by pk as

[[m]] ← (m+ r1 ∗ [[0]] + r2 ∗ [[0]]�) mod N, (3)

where r1,r2 ∈ {0, 1}kr .
Note that the decryption algorithm of the PHE scheme is

the same as that of the SHE scheme. Meanwhile, the PHE
scheme is also IND-CPA secure, as proved in [23].

Remark. Besides the SHE scheme, we can also lever-
age other fully homomorphic encryption schemes, such as
BGV [32] and CKKS [33], to protect the privacy of our
scheme.

C. t-Access Pattern Unlinkability

In our scheme, to balance the query efficiency and data
privacy, we focus on achieving t-access pattern unlinkability
in set RkNN queries, as defined in Definition 3.

Definition 3 (t-Access Pattern Unlinkability): Our set
RkNN query scheme achieves t-access pattern unlinkability
iff one record in both the index and dataset is indistinguishably
accessed with at least (t − 1) records.

IV. BUILDING BLOCKS

We first propose an inverted prefix index and a set RkNN
query algorithm. Then, we design two oblivious data compari-
son protocols, a private filter protocol, and a private refinement
protocol to preserve the privacy of set RkNN queries.

A. Inverted Prefix Index

Based on the prefix and length filters, we introduce an
element-set inverted prefix index for the dataset. Let S =
{(idi , Si )}ni=1 be a dataset. An inverted prefix index for it can
be built by following steps below, also shown in Alg. 1.

Step 1. We first figure out the complete set of elements
in all sets, i.e., E = ∪n

i=1 Si . Then, we sort these elements
in ascending order of their frequency in S. The order will
be regarded as the global order of elements. Without loss of
generality, suppose that the global order of elements is E =
{e1, e2, . . . , ed}, and the elements in each Si ∈ S are sorted
based on the global order.

Step 2. We retrieve nearest neighbors for sets in S. Let kmax
denote the maximum value of k that users can issue. For each
Si ∈ S, we search on S for its k-th nearest neighbor kNN(Si )
and compute τi,k = J (Si , kNN(Si )) for 1 ≤ k ≤ kmax. Then,
we construct a similarity vector for Si as

si = (τi,1, τi,2, . . . , τi,kmax ). (4)

Step 3. We identify prefix sets for sets in S. Specifically,
for each Si ∈ S, we construct a set ψ(Si ) using the first
(�(1− τi,kmax ) ∗ |Si |	 + 1) elements of Si .

Step 4. We build an element-set inverted index according
to the constructed prefix sets as follows.

Algorithm 1: Inverted Prefix Index Building

Input: S = {(idi , Si )}ni=1: the dataset;
kmax: the maximum number of k;

Output: Inverted index I;
1: E = ∪n

i=1 Si ;
2: Obtain a global order of elements by sorting all of them

in E based on their frequency, denoted by
E = {e1, e2, · · · , ed};

3: Sort elements in each Si based on the global order;
4: for each Si ∈ S do
5: Initialize a vector si = (τi,1, τi,2, · · · , τi,kmax );
6: for k = 1, 2, · · · , kmax do
7: τi,k = J (Si , kNN(Si ));

8: Construct ψ(Si ) using the first
(�(1− τi,kmax ) ∗ |Si |	 + 1) elements of Si ;

9: for each Si ∈ S do
10: for each e j ∈ ψ(Si ) do
11: Initialize a vector

b j,i = (b j,i,1, b j,i,2, · · · , b j,i,kmax );
12: for k = 1, 2, · · · , kmax do
13: if Loc(e j |Si ) ≤ �(1− τi,k ) ∗ |Si |	 + 1 then
14: b j,i,k = 1;
15:

else
16: b j,i,k = 0;

17: w j,i = (idi , si ,b j,i , |Si |);
18: Set I = ∅;
19: for e j ∈ E do
20: W j = {w j,i |e j ∈ ψ(Si )};
21: I = I ∪ {(e j ,W j )};

return I;

(1) For each e j ∈ ψ(Si ), we construct a kmax-dimensional
vector b j,i = (b j,i,1, b j,i,2, . . . , b j,i,kmax ) as

b j,i,k =
�

1 If Loc(e j |Si ) ≤ �(1− τi,k ) ∗ |Si |	 + 1

0 Otherwise,
(5)

where Loc(e j |Si ) denotes the relative location of e j in Si ,
e.g., the relative location of 4 in the set {1, 4, 20} is 2.

(2) We construct a four-tuple w j,i = (idi , si ,b j,i , |Si |) for
each pair of e j and ψ(Si ).

(3) For each e j ∈ E , we construct a set W j = {w j,i |e j ∈
ψ(Si )}. Then, we build an element-set inverted prefix index
as I = {(e j ,W j )|e j ∈ E}, where e j is the set element, and
W j is a set associated with all prefix sets containing e j .

B. Inverted Prefix Index Based Set RkNN Query

Suppose that a dataset S = {(idi , Si )}ni=1 has been repre-
sented to an inverted prefix index I = {(e j ,W j )|e j ∈ E}. Let
(Q, k) be a set RkNN query request, where Q is a query set
and its elements have been sorted based on the global order.
Then, we can perform the set RkNN query (Q, k) over the
index I. Before performing the query, we first generate query
tokens for the query request (Q, k).

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:56:10 UTC from IEEE Xplore.  Restrictions apply. 



892 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

1) Token Generation: The query tokens include a filter
token and a refinement token, which are respectively used
for searching I for the candidate result and further refining
the candidate result. The filter token is in the form of FQ =
{wq, j = (e j ,Loc(e j |Q))|e j ∈ Q}, where Loc(e j |Q) is the
relative location of e j in Q. The refinement token is Q itself.
The query tokens is {FQ , Q, k}.

2) Query Processing: As shown in Alg. 2, the query
processing algorithm includes two stages, i.e., a filter stage
and a refinement stage.
• Filter Stage. In the filter stage, we use the filter token FQ

to search on the index I for the candidate result as follows.
Step 1. For each wq, j ∈ FQ , we search on I to find W j ,

where W j = {w j,i |e j ∈ ψ(Si )}.
Step 2. For each w j,i ∈ W j , we determine whether it

satisfies the prefix filter and length filter. First, we have w j,i =
(idi , si ,b j,i , |Si |) and wq, j = (e j ,Loc(e j |Q)). If Si is the set
RkNN of Q, we have J (Si , Q) ≥ τi,k . Meanwhile, Si and Q
satisfy the prefix filter and length filter�

ψ(Si ) ∩ ψ(Q) �= ∅
|Si | ∗ τi,k ≤ |Q| ≤ |Si |

τi,k
.

(6)

For the prefix filter, we have

ψ(Si ) ∩ ψ(Q) �= ∅ ⇔ {e j ∈ ψ(Si ) ∧ e j ∈ ψ(Q)}. (7)

Meanwhile, we have

e j ∈ ψ(Si ) ⇔ Loc(e j |Si ) ≤ �(1− τi,k) ∗ |Si |	 + 1

⇔ b j,i,k = 1 (8)

and

e j ∈ ψ(Q)⇔ Loc(e j |Q) ≤ �(1− τi,k) ∗ |Q|	 + 1. (9)

In this case, the prefix filter can be transformed to�
b j,i,k = 1

Loc(e j |Q) ≤ �(1− τi,k ) ∗ |Q|	 + 1.
(10)

Finally, the filter conditions will be⎧⎪⎨
⎪⎩

b j,i,k = 1

Loc(e j |Q) ≤ �(1− τi,k) ∗ |Q|	 + 1

|Si | ∗ τi,k ≤ |Q| ≤ |Si |
τi,k
.

(11)

Thus, in the filter stage, we will pick out the sets whose w j,i ∈
W j and wq, j = (e j ,Loc(e j |Q)) satisfy the filter conditions
in Eq. (11) for e j ∈ Q. The candidate result will be

C = {idi |w j,i and wq, j satisfy Eq. (11) for e j ∈ Q}. (12)

• Refinement Stage. In the refinement stage, we will refine
the candidate result by verifying whether each candidate set
Si satisfying J (Si , Q) ≥ τi,k . If yes, we will put it into the
final query result, i.e., R = R ∪ {idi}.

C. Oblivious Data Comparison

This section presents two oblivious data comparison proto-
cols, i.e., an oblivious less than comparison (OLTC) protocol
and an oblivious greater than comparison (OGTC) protocol.

Algorithm 2: Inverted Index Based Set RkNN Query
Input: Inverted index I; Query tokens: (FQ , Q, k);
Output: The query result R;
1: �Filter stage �
2: Candidate result C = ∅;
3: for each wq, j ∈ Q do
4: Retrieve W j = {w j,i |e j ∈ ψ(Si )};
5: for each w j,i = (idi , si ,b j,i , |Si |) ∈W j do
6: �Prefix filter and length filter �
7: if b j,i,k = 1 &&

Loc(e j |Q) ≤ �(1− τi,k ) ∗ |Q|	 + 1 &&
|Si | ∗ τi,k ≤ |Q| ≤ |Si |

τi,k
then

8: C = C ∪ {idi};
9: Query result R = ∅;

10: �Refinement stage �
11: for each idi ∈ C do
12: if J (Si , Q) ≥ τi,k then
13: R = R ∪ {idi};

return R;

1) OLTC Protocol: The OLTC protocol is run by S1 and
S2. S1 has a ciphertext [[m]], and S2 has the corresponding
secret key sk that is used to encrypt [[m]]. They can obliviously
determine whether m ≤ 0 or not. Finally, S1 can obtain an
encrypted bit [[b]], where

b =
�

1 If m ≤ 0

0 If m > 0.
(13)

Detailed steps are shown as follows.
Step 1: S1 chooses two random numbers {r1, r2} ∈ M

satisfying r1 > r2 > 0. Then, it chooses a number f , where f
is set to be either [[1]] or [[−1]] with equal probability. After
that, it computes

[[m�]] = f ∗ (r1 ∗ [[m]] − r2) mod N, (14)

and sends [[m�]] to S2.
Step 2: On receiving [[m�]], S2 decrypts [[m�]] and

obtains m�. Then, S2 sends an encrypted ciphertext [[b�]] to
S1, where

b� =
�

1 If m� < 0

0 If m� > 0.
(15)

Step 3: With [[b�]], S1 computes a value [[b]] as

[[b]] =
�
[[b�]] If f = [[1]]
1+ [[−1]] ∗ [[b�]] If f = [[−1]]. (16)

2) Correctness: We prove the correctness of the OLTC
protocol by proving that Eq. (13) holds. 1) When m ≤ 0 and
f = [[1]], we have m� = (r1 ∗ m − r2). Since r1 > r2 > 0,
we can infer that m� < 0 and b� = 1. Based on “ f = [[1]]”,
we have [[b]] = [[b�]] = [[1]]. 2) When m > 0 and f = [[1]],
we have m� > 0 and b� = 0. Then, we have [[b]] = [[b�]] = [[0]].
3) When m ≤ 0 and f = [[−1]], we have m� = −(r1 ∗m−r2).
Since r1 > r2 > 0, we have m� > 0 and b� = 0. Based on
“ f = [[−1]]”, we have [[b]] = 1+[[−1]]∗[[b�]] = [[1]]. 4) When

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:56:10 UTC from IEEE Xplore.  Restrictions apply. 



ZHENG et al.: SetRkNN: EFFICIENT AND PRIVACY-PRESERVING SET REVERSE kNN QUERY IN CLOUD 893

m > 0 and f = [[−1]], we have m� < 0 and b� = 1. Then,
we have [[b]] = 1 + [[−1]] ∗ [[b�]] = [[0]]. Therefore, Eq. (13)
holds, and the OLTC protocol is correct.

3) OGTC Protocol: The OGTC protocol is run by S1
and S2. S1 has a ciphertext [[m]], and S2 has the correspond-
ing secret key sk. They can obliviously determine whether
m ≥ 0 or not. Finally, S1 can obtain an encrypted bit [[b]],
where

b =
�

1 If m ≥ 0

0 If m < 0.
(17)

The OGTC protocol is almost the same as that of the OLTC
protocol except that [[m�]] is computed as

[[m�]] = f ∗ (r1 ∗ [[m]] + r2) mod N. (18)

The correctness of the OGTC protocol can be easily inferred
from that of the OLTC protocol.

D. Private Filter Protocol

This section introduces a private filter protocol to privately
determine whether w j,i and (wq, j , |Q|, k) satisfy the filter
conditions in Eq. (11), where w j,i = (idi , si ,b j,i , |Si |) and
wq, j = (e j ,Loc(e j |Q)). The protocol is executed between
two servers S1 and S2, and the privacy is protected by the
SHE scheme. The server S1 has the ciphertexts of w j,i and
(wq, j , |Q|, k). The server S2 has the corresponding secret
key skf used for producing the ciphertexts in S1. They
cooperate to determine whether three conditions in Eq. (11)
hold or not. Since determining b j,i,k = 1 is easy, we only
focus on showing how to determine whether Loc(e j |Q) ≤
�(1− τi,k ) ∗ |Q|	 + 1 and |Si | ∗ τi,k ≤ |Q| ≤ |Si |

τi,k
.

(1) Determination of Loc(e j |Q) ≤ �(1 − τi,k) ∗ |Q|	 + 1.
Since our SHE scheme can only encrypt integers, we first
represent τi,k into the fraction form, i.e., τi,k = αi,k

βi,k
, where

both αi,k and βi,k are positive integers. Then, the condition
Loc(e j |Q) ≤ �(1− τi,k ) ∗ |Q|	 + 1 is equivalent to

Loc(e j |Q) ≤ �(1− αi,k

βi,k
) ∗ |Q|	 + 1

⇔ αi,k ∗ |Q| − βi,k ∗ (|Q| + 1− Loc(e j |Q)) ≤ 0. (19)

(2) Determination of |Si | ∗ τi,k ≤ |Q| ≤ |Si |
τi,k

. First,

determining |Si |∗τi,k ≤ |Q| ≤ |Si |
τi,k

is equivalent to determining

(|Q| − |Si | ∗ τi,k) ∗ (|Q| − |Si |
τi,k

) ≤ 0. (20)

Meanwhile, based on τi,k = αi,k
βi,k

, the determination can be
further transformed to

(|Si | ∗ αi,k − βi,k ∗ |Q|) ∗ (αi,k ∗ |Q| − |Si | ∗ βi,k ) ≥ 0.

(21)

Based on Eq. (19) and Eq. (21), “w j,i = (idi , si ,b j,i , |Si |)”
in our scheme will be encrypted into ciphertexts

[[w j,i ]] = ([[idi]], [[αi ]], [[−βi ]], [[b j,i ]], [[|Si |]]) (22)

with ⎧⎪⎨
⎪⎩
[[αi ]] = ([[αi,1]], . . . , [[αi,kmax ]])
[[−βi ]] = ([[−βi,1]], . . . , [[−βi,kmax ]])
[[b j,i ]] = ([[b j,i,1]], . . . , [[b j,i,kmax ]]).

(23)

Meanwhile, wq, j = (e j ,Loc(e j |Q)) will be encrypted into
ciphertexts as

[[wq, j ]] = ([[e j ]],−Loc(e j |Q)). (24)

Thus, the server S1 has the encrypted ciphertext
[[w j,i ]] = ([[idi]], [[αi ]], [[−βi ]], [[b j,i ]], [[|Si |]]) and ([[wq, j ]],
|Q|, k). Moreover, we assume that S1 has a ciphertext
[[−1]]. Then, the server S1 can determine whether w j,i and
(wq, j , |Q|, k) satisfy the filter conditions in Eq. (11) with the
help of S2. The protocol is run as follows.

Step 1. S1 → S2: The server S1 first uses homomorphic
properties to compute

[[u]] ← [[αi,k ]] ∗ |Q| + [[−βi,k]] ∗ (|Q| + 1− Loc(e j |Q))
(25)

and

[[v]] ← ([[|Si |]] ∗ [[αi,k ]] + [[−βi,k]] ∗ |Q|)
∗ ([[αi,k ]] ∗ |Q| + [[−βi,k]] ∗ [[|Si |]]). (26)

Then, on inputs of [[u]] (resp. [[v]]) and skf, S1 and S2 runs
the OLTC (resp. OGTC) protocol such that S1 obtains an
encrypted [[bu]] (resp. [[bv ]]), where

bu =
�

1 If u ≤ 0

0 If u > 0
bv =

�
1 If u ≥ 0

0 If u < 0.
(27)

Step 3. S1: With {[[bu]], [[bv]]}, S1 computes

[[z]] ← [[b j,i,k]] ∗ [[bu]] ∗ [[bv ]]. (28)

Note that if z = 1, we have w j,i and (wq, j , |Q|, k) satisfy the
filter conditions in Eq. (11), and they do not satisfy otherwise.

Theorem 3: The private filter protocol is correct.
Proof: The protocol is correct if

z = 1⇔

⎧⎪⎨
⎪⎩

b j,i,k = 1

Loc(e j |Q) ≤ �(1− τi,k) ∗ |Q|	 + 1

|Si | ∗ τi,k ≤ |Q| ≤ |Si |
τi,k
.

(29)

Next, we prove its correctness. Based on Eq. (28), we have

z = 1 ⇔ (b j,i,k = 1) AND (bu = 1) AND (bv = 1)

⇔ (b j,i,k = 1) AND (u ≤ 0) AND (v ≥ 0). (30)

Based on the OLTC and OGTC protocols, we have

u ≤ 0⇔ αi,k ∗ |Q| − βi,k ∗ (|Q| + 1− Loc(e j |Q)) ≤ 0

and

v ≥ 0

⇔ (|Si | ∗ αi,k − βi,k ∗ |Q|)(αi,k ∗ |Q| − |Si | ∗ βi,k) ≥ 0.

In this case, we have⎧⎪⎨
⎪⎩
Loc(e j |Q) ≤ �(1− αi,k

βi,k
) ∗ |Q|	 + 1

(|Q| − |Si | ∗ τi,k ) ∗ (|Q| − |Si |
τi,k

) ≤ 0.
(31)

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:56:10 UTC from IEEE Xplore.  Restrictions apply. 



894 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

By combining b j,i,k = 1, we can infer that Eq. (29) is correct.
Therefore, the private filter protocol is correct. �

E. Private Refinement Protocol

This section introduces a private refinement protocol to
privately determine whether a candidate set Si and the query
request (Q, k) satisfy J (Si , Q) ≥ τi,k or not. The protocol is
executed between two servers S1 and S2, and the privacy is
protected by the SHE scheme with a different pair of public
and secret keys from those of the private filter protocol. The
server S2 has the ciphertexts of (Si , si ) and (Q, k), where si =
(τi,1, τi,2, · · · , τi,kmax ). The server S1 has the corresponding
secret key skr used for encrypting the ciphertexts in S2. The
core idea of the protocol is to determine whether J (Si , Q) ≥
τi,k or not.

Based on the representation τi,k = αi,k
βi,k

, determining
J (Si , Q) ≥ τi,k is equivalent to determining

|Si ∩ Q|
|Si ∪ Q| ≥

αi,k

βi,k
⇔ |Si ∩ Q|
|Si | + |Q| − |Si ∩ Q| ≥

αi,k

βi,k

⇔ |Si ∩ Q| ∗ (αi,k + βi,k)− (|Si | + |Q|) ∗ αi,k ≥0.

(32)

In the protocol, (Si , si ) is encrypted into ciphertexts

[[(Si , si )]] ← ([[Si ]], [[|Si |]], [[−αi ]], [[αi + β i ]]) (33)

with⎧⎪⎨
⎪⎩
[[Si ]] = {([[e2

l ]], [[−2el]])|el ∈ Si }
[[−αi ]] = ([[−αi,1]], · · · , [[−αi,kmax ]])
[[αi + β i ]] = ([[αi,1 + βi,1]], · · · , [[αi,kmax + βi,kmax ]]).

(34)

Meanwhile, Q is encrypted as

[[Q]] = {([[e j ]], [[e2
j ]])|e j ∈ Q}. (35)

S2 holds these ciphertexts [[(Si , si )]] and ([[Q]], |Q|, k). S1 has
the corresponding secret key skr and assists S2 to achieve the
determination of Eq. (32) as follows.

Step 1. S2 computes [[|Si ∩ Q|]] as follows.
(1) S2 → S1: For each pair of (el , e j ) ∈ (Si , Q), S2 first

computes

[[xl, j ]] ← ([[e2
l ]] + [[−2el]] ∗ [[e j ]] + [[e2

j ]]) mod N. (36)

Then, on inputs of [[xl, j ]] and skr, S1 and S2 run the OLTC
protocol such that S2 obtains an encrypted bit [[bl, j ]], where

bl, j =
�

1 If xl, j ≤ 0

0 If xl, j > 0.
(37)

Finally, S2 obtains a set [[Bi ]] = {[[bl, j ]]|el ∈ Si , e j ∈ Q}.
(2) S2: With [[Bi ]], S2 computes

[[|Si ∩ Q|]] ← (
�

el∈Si ,e j∈Q

[[bl, j ]]) mod N. (38)

The correctness of Eq. (38) will be proved in Theorem 4.

Step 2. S2 achieves the determination of Eq. (32). Specifi-
cally, S2 first computes

[[zi ]]← [[|Si ∩ Q|]] ∗ [[αi,k + βi,k ]] + ([[|Si |]] + |Q|) ∗ [[−αi,k ]].
Then, on inputs [[zi ]] and skr, S1 and S2 run the OGTC
protocol such that S2 can obtain an encrypted bit [[bi ]], where

bi =
�

1 If zi ≥ 0

0 If zi < 0.
(39)

Meanwhile, “bi = 1” denotes J (Si , Q) ≥ τi,k and “bi = 0”
denotes J (Si , Q) < τi,k .

Theorem 4: The private refinement protocol is correct.
Proof: The protocol is correct if�
[[|Si ∩ Q|]] ←	

el∈Si ,e j∈Q([[bl, j ]]) mod N

bi = 1⇔ J (Si , Q) ≥ τi,k .
(40)

(1) Correctness of [[|Si ∩ Q|]] ← 	
el∈Si ,e j∈Q([[bl, j ]])

mod N. When bl, j = 1, we have xl, j ≤ 0. Based on Eq. (36)
and homomorphic properties, we have xl, j = (el−e j )

2. In this
case, we have xl, j ≤ 0 ⇔ el = e j and [[|Si ∩ Q|]] ←	

el∈Si ,e j∈Q([[bl, j ]]) mod N.
(2) Correctness of bi = 1⇔ J (Si , Q) ≥ τi,k . When bi = 1,

we have zi ≥ 0 and can further deduce that J (Si , Q) ≥ τi,k .
Therefore, the private refinement protocol is correct. �

V. OUR PROPOSED SCHEME

Based on private filter/refinement protocols, we present our
SetRkNN scheme. In this scheme, we elaborately design each
step to guarantee the security of t-access pattern unlinkability.
Specifically, our scheme has four phases, including System
Initialization, Data Outsourcing, Token Generation, and Set
RkNN Query Processing.

A. Phase I: System Initialization

The data owner initializes the system. It first chooses
security parameters {kM,kr,kL,kp,kq} and generates the
message space and two pairs of public and secret keys as�
pkf,skf,M← PHE.KeyGen(kM,kr,kL,kp,kq)

pkr,skr← PHE.KeyGen(kM,kr,kL,kp,kq),

where {pkf,skf} and {pkr,skr} are respectively used for
protecting the privacy of index search and candidate records
refinement. Then, to assist two servers performing RkNN
queries, the data owner generates two ciphertexts of −1, i.e.,�

[[−1]]f← SHE.Enc(−1,skf);
[[−1]]r← SHE.Enc(−1,skr).

(41)

Note that the data owner here calls the SHE scheme to
encrypt −1 rather than the PHE scheme. This is because using
the PHE scheme to encrypt the message requires one time
homomorphic multiplication between {[[0]], [[0]]�} and random
numbers {r1,r2} as shown in Eq. (3), which will decrease the
multiplicative depth of the PHE scheme by one.

After that, the data owner publishes the public keys pkf,
pkr, and the ciphertexts [[−1]]f, [[−1]]r, sends skf to the
server S2, and sends skr to the server S1. When query

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:56:10 UTC from IEEE Xplore.  Restrictions apply. 



ZHENG et al.: SetRkNN: EFFICIENT AND PRIVACY-PRESERVING SET REVERSE kNN QUERY IN CLOUD 895

users register to the system, the data owner will autho-
rize them by some common authorization methods such as
account/password and send E to them.

B. Phase II: Data Outsourcing

The data owner outsources its dataset S = {(idi , Si )}ni=1 to
two servers as follows.

Step 1. The data owner builds an element-set inverted prefix
index I = {(e j ,W j )|e j ∈ E} as Alg. 1.

Step 2. The data owner uses the secret key skf to encrypt
the index I by encrypting each entry (e j ,W j ) into ciphertexts
([[e j ]], [[W j ]]), where [[W j ]] ← {[[w j,i ]]|w j,i ∈ W j } and w j,i
is encrypted according to Eq. (22).

Step 3. The data owner uses the secret key skr to encrypt
the dataset S by encrypting each set Si ∈ S and its similarity
vector si into ciphertexts [[(Si , si )]] as Eq. (33).

Step 4. The data owner outsources the encrypted index,
denoted by [[I]] = {([[e j ]], [[W j ]])|e j ∈ E}, to the server
S1, and outsources the encrypted dataset, denoted by [[S]] =
{(idi , [[(Si , si )]])|Si ∈ S}, to the server S2.

C. Phase III: Token Generation

When a query user launches a set RkNN query request
(Q, k) with k ≤ kmax, it generates the query token as follows.

Step 1. The query user generates the query tokens
(FQ , Q, k) as the token generation process in Section IV-B.

Step 2. The query user uses the public key pkf to encrypt
the filter token FQ = {wq, j }e j∈Q into ciphertexts as [[FQ]] ←
{[[wq, j ]]|e j ∈ Q}, where wq, j is encrypted based on Eq. (24).
Then, the query user uses the public key pkr to encrypt the
refinement token Q into ciphertexts [[Q]] as Eq. (35).

Step 3. The query user sends the encrypted filter token
([[FQ ]], |Q|, k) to the server S1 and sends the encrypted
refinement token ([[Q]], |Q|, k) to the server S2.

D. Phase IV: Set RkNN Query Processing

In the query processing phase, two servers utilize the query
tokens to search for the query result by a filter stage and a
refinement stage.
• Filter Stage. In the filter stage, the server S1 uses the

filter token ([[FQ ]], |Q|, k) to search on the index [[I]] for the
candidate query result with the help of the server S2, where�

[[FQ ]] ← {[[wq, j ]] = ([[e j ]],Loc(e j |Q))|e j ∈ Q}
[[I]] = {([[e j ]], [[W j ]])|e j ∈ E}. (42)

Step 1. Based on Alg. 2, for each [[wq, j ]] ∈ [[FQ]], the server
S1 first searches on [[I]] to find [[W j ]]. Specifically, S1 will
search for [[W j ]] by comparing [[e j ]] with each [[el ]] ∈ [[I]] as
the following steps.

(1) S1 → S2: S1 computes

[[g j,l]] ← r1 ∗ ([[e j ]]2 + [[−1]] ∗ 2 ∗ [[e j ]] ∗ [[el]] + [[el ]]2)− r2,

where r1, r2 ∈ M are random numbers satisfying r1 >
r2 > 0. It is easy to observe that when e j = el ,
g j,l < 0. Otherwise, g j,l > 0. Then, S1 constructs a set
[[G j ]] = {(psu j,l, [[g j,l]])|el ∈ I}, where psu j,l is a ran-
dom identity chosen for [[g j,l]] and is just for simplifying

the description. Then, S1 permutates [[G j ]] and sends the
permutated [[G j ]] to the server S2.

(2) S2 → S1: On receiving [[G j ]], S2 uses the secret key
skf to decrypt [[G j ]] and obtains the set G j = {g j,l|el ∈
I}. Then, S2 identifies the element satisfying g j,l < 0,
which is associated with the element el with el = e j . Then,
to achieve t-access pattern unlinkability, S2 randomly chooses
t − 1 elements satisfying g j,l > 0. After that, it uses the
identifies of these elements to form a set P j and returns it
to S1.

(3) S1: Based on the received P j , S1 first does a reverse
permutation and constructs the set [[W j ]] = {[[Wl ]]|psu j,l ∈
P j }, where [[Wl]] ← {[[wl,i ]]|wl,i ∈ Wl}. Obliviously, [[W j ]]
can be further represented to

[[W j ]] = {[[wl,i ]]|psu j,l ∈ P j ,wl,i ∈Wl}. (43)

Step 2. For each [[wl,i ]] ∈ [[W j ]], S1 and S2 run the
private filter protocol to determine whether it satisfies the filter
condition. Meanwhile, S1 can get [[zl,i ]], where “zl,i = 1”
denotes that [[wl,i ]] satisfies the filter condition, and “zl,i = 0”
denotes that [[wl,i ]] does not satisfy the filter condition.

After that, S1 constructs a set

[[B j ]] ← {([[idi]], [[zl,i ]])|[[wl,i ]] ∈ [[W j ]]}. (44)

Finally, S1 can obtain a set [[B j ]] for each [[wq, j ]] ∈ [[FQ ]].
Then, it can obtain a set [[B]] = ∪[[wq, j ]]∈[[FQ ]][[B j ]].

Step 3. S1 identifies the candidate result and sends it to S2.
Specifically, it first computes the number of elements that have
not been filtered. Based on this value, it adds a certain number
of dummy identifies into [[B]] and forms the candidate result.
Detailed steps are shown as follows.

(1) S1 computes [[nq ]] = 	
[[zl,i ]]∈[[B]][[zl,i ]]. Then, S1

chooses two random numbers r1, r2 ∈ M and computes
[[n�q ]] = r1 ∗ [[nq ]] + r2. After that, S1 sends [[n�q ]] to S2.

(2) After receiving [[n�q ]], S2 uses the secret key skf to
recover n�q by decrypting [[n�q ]]. Then, it sends n�q back to S1.

(3) With n�q , r1, and r2, S1 computes nq = n�q−r2

r1
. To achieve

t-access pattern unlinkability, S1 randomly chooses (t−1)∗nq

dummy identifies, denoted by D = {idq,i}(t−1)∗nq
i=1 and uses the

public key pkf to encrypt them into ciphertexts

[[D]] = {[[idq,i]]|1 ≤ i ≤ (t − 1) ∗ nq}. (45)

(4) For each pair of ([[idi ]], [[zl,i ]]) ∈ [[B]], S1 computes
[[idi ∗ zl,i ]] and organizes them into a set

[[B�]] = {[[idi ∗ zl,i ]]|[[idi]] ∈ [[B]]}. (46)

(5) S1 sends the candidate result [[C]] = [[D]] ∪ [[B�]] to S2.
• Refinement Stage. On receiving the candidate result [[C]],

S2 refines it as the following steps.
Step 1. S2 uses the secret key skf to decrypt each ciphertext

in it and obtains a set of identities

C � = {idq,i |1 ≤ i ≤ (t − 1) ∗ nq} ∪ {idi |zi, j = 1, idi ∈ B}.
Since the number of identities in {idi |zi, j = 1, idi ∈ B} is nq ,
there are t ∗nq identities in C �. For simplifying the description,
we denote C � as C � = {idq,i |1 ≤ i ≤ t ∗ nq}.

Step 2. For each idq,i ∈ C �, S2 and S1 run the private
refinement protocol to verify whether ([[Sq,i ]], [[sq,i ]]) in S2

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:56:10 UTC from IEEE Xplore.  Restrictions apply. 



896 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

satisfies the query request ([[Q]], |Q|, k). Meanwhile, S2 can
obtain a value [[bq,i ]], where “bq,i = 1” denotes that idq,i
satisfies the query request and “bq,i = 0” denotes idq,i does
not satisfy the query request. Then, for each idq,i ∈ C �, S2
computes [[hq,i ]] ← idq,i ∗ [[bq,i ]] + rq,i , where rq,i ∈ M
is a random number. Finally, S2 sends the set of ciphertexts
[[R1]] = {[[hq,i ]]|idq,i ∈ C �} to the server S1 and the set of
random numbers R2 = {rq,i |idq,i ∈ C �} to the query user.

Step 3. On receiving [[R1]], S1 recovers the set R1 by
decrypting each [[hq,i ]]. Then, it sends R1 = {hq,i |idq,i ∈ C �}
to the query user.

Step 4. The query user uses R1 and R2 that are respectively
from S1 and S2 to recover the final query result. Specifically,
the query user can compute

hq,i − rq,i =
�

idq,i If bq,i = 1

0 If bq,i = 0.
(47)

Then, the query result will be R = {hq,i − rq,i |hq,i − rq,i �=
0, hq,i ∈ R1}. The query result is correct because all sets with
idq,i ∈ C � satisfy the query request and the corresponding
identity idq,i will be the query result.

Remark. It is worth noting that we use homomorphic
encryption to protect data privacy, because it has two
advantages over the competent privacy-preserving techniques
(e.g., secret sharing) in our scheme. On the one hand, our
scheme involves many multiplication operations, which can be
easily achieved using homomorphic properties of the homo-
morphic encryption and is communication free. On the other
hand, using homomorphic encryption allows the data owner
to separately store the index and set records in S1 and S2.
Such storage approach contributes to the deign of our t-access
pattern unlinkability strategy. That is, S2 can randomly add
dummy entries to access the index in S1, and S1 can randomly
add dummy entries to access set records in S2.

VI. SECURITY ANALYSIS

In this section, we first revise the security of the SHE
scheme and then prove the security of our SetRkNN scheme.

A. Revised Security Proof for the SHE Scheme

Here, we first introduce the (L,p)-based decision problem
and revise its intractability and the way of the parameter
setting for resisting the potential approximate great common
divisor (AGCD) problem. Then, we prove the security of the
SHE scheme.

Definition 4 ((L,p)-based decision problem): Suppose
that there are two sets S and S with�

S : {x = (αL+ βp) mod N|α, β ∈ ZN, αL < p}
S = ZN \ S : {x = (αL+ βp) mod N|α, β ∈ ZN, αL ≥ p}.

Given (kr,kL,kp,kq) and a set of instances in S, i.e., {xi =
(αiL + βip) mod N ∈ S|i = 1, 2, · · · , l}, the (L,p)-based
decision problem is to determine that a random x ∈ ZN is in
S or S.
• Intractability of (L,p)-based decision problem. The

(L,p)-based decision problem is to determine whether a
random number x ∈ ZN is in S or S. To solve this decision

problem, the distinguisher B can attempt to find the values of
(L,p) in the following three ways.
∗ First, since N = p ∗ q, B can try to factor N to

obtain p, where q = �� kqkp 
i=1 qi . With p, B can recover

L from {xi = (αiL + βip) mod N ∈ S|i = 1, 2, · · · , l}.
Specifically, B can compute xi mod p for 1 ≤ i ≤ l and
obtains L by computing the great common divisor of all values
in {αiL|i = 1, 2, · · · , l}. Once B knows (L,p), the (L,p)-
based decision problem can be solved. Therefore, we need to
choose proper parameters {kp,kq} to ensure the large integer
factoring problem is hard.
∗ Second, B can exhaust the values of {α,L} and compute

gcd(x − αL,N) to obtain p. With (L,p), the (L,p)-based
decision problem can be solved. Thus, we need to choose
proper kr and kL such that exhausting {α,L} is hard.
∗ Third, B can try to obtain p from {xi = (αiL + βip)

mod N ∈ S|i = 1, 2, · · · , l} by solving the AGCD problem.
Specifically, since xi = (αiL + βip) mod N and αiL <
p, computing p based on {xi = (αiL + βip) mod N ∈
S|i = 1, 2, · · · , l} can be reduced to the AGCD problem,
as described in [34]. Meanwhile, it is well known that the
orthogonal based approach in [35] is one of the most effective
approaches to solve the AGCD problem, which reduces the
AGCD problem to the shortest non-zero vector solving prob-
lem in the lattice with the rank of γ , and γ should satisfy
that

γ ≥ kq+kp−(dm+1)∗(kr+kL)
kp−(dm+1)∗(kr+kL) (48)

where i) kq+kp is the bit length of xi ; ii) (dm+1)∗(kr+kL) is
the bit length of αi ∗ L, which is related to the multiplicative
depth dm of the SHE scheme; and iii) kp is the bit length
of p. As a result, to guarantee the security of our scheme,
we must carefully set {kr,kL,kp,kq} such that γ must be
large enough to guarantee that the shortest non-zero vector
solving problem over the lattice with the rank of γ is hard.

Summarizing the above three ways, when the security para-
meters {kr,kL,kp,kq} are properly chosen, the (L,p)-based
decision problem is intractable. An example parameter setting
is that kr = 80, kL = 80, kp = 1024, kq = 236896, where
the maximum multiplicative depth is dmax = � kp

kr+kL 	−1 = 5.
In this parameter setting, the (L,p)-based decision problem is
intractable, as shown below.
(1) “kr = 80” and “kL = 80” guarantee the hardness of

exhausting {α,L};
(2) “kp = 1024” and “kq = 236896” guarantee the hardness

of factoring N (N = p ∗�� kqkp 
i=1 qi );

(3) When “kr = 80”, “kL = 80”, “kp = 1024”, and “kq =
236896”, we can deduce that

kq + kp − (dm + 1) ∗ (kr + kL)
kp − (dm + 1) ∗ (kr + kL) ∈ [275, 3702] (49)

where dm ∈ [0,dmax] � dm ∈ [0, 5]. It means that γ should
be equal to or greater than 275 to solve the AGCD problem.
When γ ≥ 275, the shortest non-zero vector solving problem
in the lattice is hard [36]. That is, the AGCD problem is
also hard under this parameter setting, and the (L,p)-based
decision problem is intractable.

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:56:10 UTC from IEEE Xplore.  Restrictions apply. 



ZHENG et al.: SetRkNN: EFFICIENT AND PRIVACY-PRESERVING SET REVERSE kNN QUERY IN CLOUD 897

Based on the intractability of the (L,p)-based decision
problem, we can define the (L,p)-based decision assumption,
as shown in the following Definition 5.

Definition 5 ((L,p)-Based Decision Assumption): (L,p)-
based decision problem satisfies (L,p)-based decision
assumption if for any polynomial time algorithm, its
advantage in solving the (L,p)-based decision problem is a
negligible function in kr, kL, kp, and kq.

Theorem 5: The SHE scheme is semantically secure against
chosen-plaintext attacks (CPA) under the (L,p)-based decision
assumption.

Proof: Suppose that there exists a probabilistic polynomial
time (PPT) adversary A that has a non-negligible advantage
ε to break the semantic security of the SHE scheme. We can
construct a distinguisher B, which has access to A and can
have a non-negligible advantage to break the (L,p)-based
decision problem. Let z ∈ {0, 1} be a random bit, and an
(L,p)-based decision instance (kr,kL,kp,kq,N, x) is given
to B, where x is randomly chosen from S if z = 0, and x
is randomly chosen from S if z = 1. Then, the (L,p)-based
decision problem is to guess z.

With the (L,p)-based decision instance (kr,kL,
kp,kq,N, x), B first chooses kM such that kM � kL
and sets M = {m|m ∈ [−2kM−1, 2kM−1)} as the message
space. Then, B sends (kM,kr,kL,kp,kq,N, x) and M
to A.

On receiving (kM,kr,kL,kp,kq,N, x) and M, A selects
two messages m0,m1 ∈ M and sends them to B. Then, B
flips a bit b ∈ {0, 1}, computes c = mb + x , and returns c as
a ciphertext to A.

After receiving c, A returns B a bit b� ∈ {0, 1} as the guess
of b. B then guesses z = 0 if b� = b. Obviously, when z = 0,
i.e., x ∈ S, we have c = (mb+x) mod N = (mb+αL+βp) mod
N is a valid ciphertext. In this case, A can exert his capability
and will guess b correctly with the probability 1

2 + ε. Then,
Pr[B success|z = 0] = 1

2 + ε. On the other hand, when z = 1,
i.e., x ∈ S, c = (mb + x) mod N = (mb + αL + βp) mod N
is no longer a valid ciphertext. Then, the probability that A
can guess b correctly is only 1

2 , i.e., Pr[B success|z = 1] = 1
2 .

Summarizing the above two cases, we have Pr[B success] =
1
2 (

1
2 + ε) + 1

2 · 1
2 = 1

2 + ε
2 . Since ε is non-negligible,

the result contradicts with the (L,p)-based decision assump-
tion. Thus, the SHE scheme is semantically secure against
CPA. �

B. Security Analysis of Our SetRkNN Scheme

In this section, we formally prove the security of our
SetRkNN query scheme. Since our scheme is a search-
able encryption scheme, we prove its security based on a
simulation-based real/ideal worlds model. The real world
model works as our SetRkNN scheme, and the ideal world is
simulated based on the leakages of our scheme. If the views
of adversaries (i.e., two cloud servers) in real and ideal worlds
are indistinguishable, our scheme is secure under the leakages
that are used for simulating the ideal world. Next, we first
define the leakages of our scheme and use them to simulate
the ideal world. Then, we define and prove the security of our
scheme.

Our scheme has two adversaries, who corrupt S1 and S2,
respectively. The information leaked to them is L1 and L2.
• L1 : Leakages to S1 include 1) Public parameters: pkf,

pkr, and M; 2) The secret key: skr; 3) The number of
elements in E , i.e., |E |; 4) The number of elements in each W j ,
i.e., |W j |, where e j ∈ W ; 5) The access pattern of the index
[[I]]. Note that the access pattern is not the real access pattern,
because each data record is accessed with (t − 1) dummy
records; 6) The values of {|Q|, kmax, k}; and 7) Intermediate
values, including nq and |R1|.
• L2 : Leakages to S2 include 1) Public parameters: pkf,

pkr, and M; 2) The secret key: skf; 3) The number of sets
in S, i.e., |S|; 4) The number of elements in each set Si ∈ S,
i.e., |Si |; 5) The access pattern of [[S]], which is also not the
real access pattern due to dummy records; 6) The value of
{|Q|, kmax, k}; and 7) Intermediate values, including the sign
of g j,l , i.e., sign(g j,l) and |[[C]]|.

Based on L1 and L2, we simulate the ideal world of our
SetRkNN query scheme.

Ideal World: The ideal world has four participants, includ-
ing two probabilistic polynomial-time (PPT) adversaries
{Adv1, Adv2}, and two PPT simulators {Sim1, Sim2}, where
Sim1 has L1 and Sim2 has L2. Sim1 (resp. Sim2) will
intercept messages to Adv1 (resp. Adv2), and replace these
messages with values that are simulated based on L1 (resp.
L2). Two adversaries {Adv1, Adv2} interact with two simula-
tors {Sim1, Sim2} as follows.

Phase I: Simulated System Initialization: In the system
initialization phase, Sim1 sends skr to Adv1, and Sim2 sends
skf to Adv2.

Phase II: Simulated Data Outsourcing: In the data outsourc-
ing phase, Adv1/Adv2 chooses a set dataset S = {(idi , Si )}ni=1
and sends it to Sim1 and Sim2. Then, Sim1 and Sim2 do the
simulation of data outsourcing as follows.
• Sim1 constructs an inverted prefix index
[[I]]sim as the simulation of [[I]]. Specifically,
Sim1 chooses |E | random integers in ZN, denoted by
{[[e j ]]sim|1 ≤ j ≤ |E |}, as the simulation of [[e j ]]. Then,
it constructs [[W j ]]sim ← {[[w j,i ]]sim|1 ≤ i ≤ |W j |}
as the simulation of [[W j ]], where [[w j,i ]]sim =
([[idi ]]sim, [[αi ]]sim, [[−β i ]]sim, [[b j,i ]]sim, [[|Si |]]sim). Mea-
nwhile, {[[αi ]]sim, [[−βi ]]sim, [[b j,i ]]sim} are three kmax-
dimensional random vectors in ZN, and {[[idi ]]sim, [[|Si |]]sim}
are two random numbers in ZN. Then, Sim1 sends
{([[e j ]]sim, [[W j ]]sim)|1 ≤ j ≤ |E |} to Adv1 as the
simulation of [[I]].
• Sim2 constructs the encrypted dataset [[S]]sim =
{[[(Si , si )]]sim|1 ≤ i ≤ |S|} as the simulation of [[S]], where

[[(Si , si )]]sim←([[Si ]]sim,[[|Si |]]sim,[[−αi ]]sim,[[αi + β i ]]sim).
Meanwhile, [[Si ]]sim is a set with 2 ∗ |Si | random num-
bers in ZN, [[|Si |]]sim is a random number in ZN, and
{[[−αi ]]sim, [[αi + β i ]]sim} are two kmax-dimensional random
vectors in ZN. Then, Sim2 sends [[S]]sim to Adv2 as the
simulation of [[S]].

Phase III: Simulated Token Generation: In the token gener-
ation phase, Adv1/Adv2 chooses a set RkNN query request
(Q, k) and sends it to Sim1 and Sim2. Then, Sim1 and
Sim2 do the simulation of token generation.

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:56:10 UTC from IEEE Xplore.  Restrictions apply. 



898 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

• Sim1 constructs a filter token [[FQ ]]sim as the sim-
ulation of [[FQ ]], where [[FQ]]sim ← {[[wq, j ]]sim =
([[e j ]]sim,− j)|1 ≤ j ≤ |Q|} and [[e j ]]sim is a random number
in ZN. Then, Sim1 sends ([[FQ]]sim, |Q|, k) to Adv1.
• Sim2 constructs a refinement token [[Q]]sim as the simula-

tion of [[Q]], where [[Q]]sim contains 2∗ |Q| random numbers
in ZN. Then, Sim2 sends ([[Q]]sim, |Q|, k) to Adv2.

Phase IV: Simulated Set RkNN Query Processing: In the
query processing phase, Sim1 and Sim2 simulate the views
of S1 and S2 in the filter/refinement stages.
• Simulated Filter Stage. Sim1 and Sim2 simulate the

views of S1 and S2 in the filter stage. Specifically, the
following simulated values will be used for replacing those
corresponding values in the filter stage.

Step 1. Simulate [[G j ]]. In the filter stage, Sim2 constructs a
set [[Gsimj ]] as the simulation of [[G j ]]. Specifically, Sim2 first
constructs a set Gsimj = {gsimj,l |1 ≤ l ≤ |E |} satisfying�

gsimj,l ∈M+ If sign(g j,l) = “+ ”

gsimj,l ∈M− If sign(g j,l) = “− ”,
(50)

where {M+,M−} respectively denote the collection of pos-
itive numbers and negative numbers in M. Then, Sim2 uses
pkf to encrypt Gsimj as [[Gsimj ]] = {[[gsimj,l ]]|1 ≤ l ≤ |E |} and
sends [[Gsimj ]] to Adv2.

Step 2. Simulate P j . Based on the access pattern of [[I]],
Sim1 can identify P j and then sends it to Adv1.

Step 3. Simulate for the filter protocol. In the filter pro-
tocol, the core computation is to run the OLTC and OGTC
protocols to compute {[[bu]], [[bv ]]}. We focus on simulating
the OLTC and OGTC protocols. In both protocol, Sim1 needs
to simulate [[b�]] received by Adv1, and Sim2 needs to simulate
[[m�]] received by Adv2. Specifically, Sim1 chooses a random
number [[b�]]sim ∈ ZN and sends it to Adv1 as the simulation
of [[b�]]. For the simulation of [[m�]], Sim2 chooses a random
number m�sim ∈M and sends [[m�sim]] to Adv2.

Step 4. Simulate [[n�q ]] received by Adv2 and n�q received
by Adv1. Sim2 chooses a random number 1 ≤ n�simq ≤ |[[C]]|/t
and uses pkf to encrypt it into a ciphertext [[n�simq ]]. Then,
Sim2 sends [[n�simq ]] to Adv2. Then, Sim1 can pick out n�q
from the leakage L1 and sends it to Adv1.

Step 5. Simulate the candidate result [[C]]. Specifically,
based on the access pattern of S in L2, Sim2 identifies the
set C � and the number of elements in [[C]], i.e., |[[C]]|. Then,
Sim2 constructs a set Csim = C � ∪ {0, 0, · · · , 0
 �� 

|[[C]]|−|C� |
}.

Then, Sim2 uses pkf to encrypt each element of Csim and
sends the encrypted set [[Csim]] to Adv2.
• Simulated Refinement Stage. Sim1 and Sim2 simulate the

views of Adv1 and Adv2 in the refinement stage as follows.
Step 1. Simulate for the refinement protocol. The core

operations of the refinement protocols are to run OLTC and
OGTC protocols. Sim1 and Sim2 can do the simulation in a
similar way as Step 3 of the simulated filter sage.

Step 2. Simulate R1. Based on L1, Sim1 can obtain |R1|.
Then, Sim1 generates a set Rsim

1 with |R1| random numbers
in M. Then, Sim1 uses pkr to encrypt each element of Rsim

1
and sends the encrypted set [[Rsim

1 ]] to Adv1.

In the ideal world, the views of Adv1 are denoted by
ViewIdeal,L1

Adv1
= {[[I]]sim, [[FQ ]]sim, |Q|, k,P j , [[b�]]sim, n�q ,

[[Rsim
1 ]]}. The views of Adv2 are denoted by

ViewIdeal,L2
Adv2

= {[[S]]sim, [[Q]]sim, |Q|, k, [[Gsimj ]], [[n�simq ]],
[[m�sim]], [[Csim]]}. Meanwhile, the views of Adv1 and
Adv2 in the real world, denoted by ViewReal

Adv1
and ViewReal

Adv2
,

are those generated in our SetRkNN scheme. Based on

{ViewIdeal,L1
Adv1

,ViewIdeal,L2
Adv2

} and {ViewReal
Adv1

,ViewReal
Adv2
},

we can define the security of our scheme.
Definition 6 (Security of SetRkNN): Our SetRkNN scheme

is selectively secure with leakages L1 and L2 to S1 and
S2 iff for any two PPT adversaries Adv1 and Adv2, there
exists two simulators Sim1 and Sim2 such that the probability
that Adv1 and Adv2 can distinguish the views of real world
and ideal world (simulated by Sim1 and Sim2) is negligible,
i.e., both |Pr(ViewIdeal,L1

Adv1
= 1) − Pr(ViewReal

Adv1
= 1)| and

|Pr(ViewIdeal,L2
Adv2

= 1)− Pr(ViewReal
Adv2
= 1)| are negligible.

Theorem 6: If the SHE scheme is IND-CPA secure, our
SetRkNN scheme is selectively secure with L1 and L2.

Proof: Based on Definition 6, we prove the selective
security of our scheme by showing that Adv1 and Adv2 cannot
distinguish their views in real and ideal worlds.

For Adv1, its views in the ideal world are ViewIdeal,L1
Adv1

=
{[[I]]sim,[[FQ ]]sim, |Q|, k,P j , [[b�]]sim,n�q ,[[Rsim

1 ]]}. Its views
in the real world are ViewReal

Adv1
= {[[I]], [[FQ]], |Q|, k,P j ,

[[b�]], n�q , [[R1]]}, where all values in ViewReal
Adv1

are gen-
erated based on our SetRkNN scheme. First, {[[I]]sim,
[[FQ]]sim, [[b�]]sim} in the ideal world are random numbers in
ZN. {[[I]], [[FQ]], [[b�]]} are SHE ciphertexts that are encrypted
by pkf. Since Adv1 has no access to the secret key of
skf, the IND-CPA security of SHE scheme can guarantee
that Adv1 cannot distinguish {[[I]]sim, [[FQ ]]sim, [[b�]]sim} and
{[[I]], [[FQ]], [[b�]]}. Second, {|Q|, k,P j , n�q} are the same in
real and ideal worlds. Adv1 also cannot use them to distinguish
real and ideal worlds. Third, [[Rsim

1 ]] in the ideal world is a
set with random numbers. [[R1]] in the real world contains
ciphertexts generated based on our scheme. Since Adv1 has a
secret key skr, Adv1 can recover Rsim

1 and R1. For Rsim
1 and

R1, both of them contain |R1| random numbers, Adv1 also
cannot distinguish them. Therefore, Adv1 cannot distinguish
ViewIdeal,L1

Adv1
and ViewReal

Adv1
.

For Adv2, its views in the ideal world are

ViewIdeal,L2
Adv2

= {[[S]]sim, [[Q]]sim, |Q|, k, [[Gsimj ]], [[n�simq ]],
[[m�sim]], [[Csim]]}. Its views in the real world are
ViewReal

Adv2
= {[[S]], [[Q]], |Q|, k, [[G j ]], [[n�q]], [[m�]], [[C]]},

where all values in ViewReal
Adv1

are generated based on our
SetRkNN scheme. First, {[[S]]sim, [[Q]]sim} are random
numbers in ZN, and {[[S]], [[Q]]} are SHE ciphertexts
that are encrypted by pkr. Since Adv2 does not have
access to the secret key skr, the IND-CPA security of
SHE scheme can guarantee that Adv2 cannot distinguish
{[[S]]sim, [[Q]]sim} and {[[S]], [[Q]]}. Second, {|Q|, k} are the
same in real and ideal worlds, so Adv1 cannot distinguish
them. Third, {[[Gsimj ]], [[m�sim]], [[n�simq ]], [[Csim]]} and
{[[G j ]], [[m�]], [[n�q]], [[C]]} are SHE ciphertexts encrypted
based on our scheme. Since Adv2 has the secret key skr,
it can recover the plaintexts {Gsimj ,m�sim, n�simq , Csim} and

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:56:10 UTC from IEEE Xplore.  Restrictions apply. 



ZHENG et al.: SetRkNN: EFFICIENT AND PRIVACY-PRESERVING SET REVERSE kNN QUERY IN CLOUD 899

Fig. 2. Computational costs evaluation. (a) Data outsourcing with n and kmax; (b) Token generation with |Q|; (c) Query processing with n, where k = kmax = 1;
(d) Query processing with k, where n = 10000 and kmax = 5; (e) Query processing with kmax, where n = 10000 and k = 1.

{G j ,m�, n�q , C}, where

Gsimj = {gsimj,l |1 ≤ l ≤ |E |} and G j = {g j,l|el ∈ I}. (51)

For each pair of {gsimj,l , g j,l}, they have the same sign based
on Eq. (50). Meanwhile, gsimj,l is a random number, and
[[g j,l]] ← r1 ∗ ([[e j ]]2 + [[−1]] ∗ 2 ∗ [[e j ]] ∗ [[el]] + [[el]]2)− r2.
Since [[g j,l]] contains two random numbers, it is also a random
number. In this case, Adv1 cannot distinguish gsimj,l and g j,l for
1 ≤ l ≤ |E |, i.e., it cannot distinguish Gsimj and G j . Similarly,
it also cannot distinguish m�sim and m�. For {n�q , C}, both
of them are random numbers in real and ideal worlds, and
Adv2 cannot distinguish them. Therefore, Adv2 cannot dis-
tinguish ViewIdeal,L2

Adv2
and ViewReal

Adv2
. In summary, our scheme

is selectively secure. �
Theorem 7: Our scheme can preserve the privacy of dataset

and query requests, and achieve t-access pattern unlinkability.
Proof: Based on Theorem 6, our scheme only leaks the

information in L1 and L2. It is obvious that our scheme can
protect the plaintexts of dataset S and query requests (Q, k)’s.
Next, we focus on showing that our scheme achieves t-access
pattern unlinkability. First, when the server S1 searches on
[[I]] to find [[W j ]] for [[wq, j ]] ∈ [[FQ ]]. S2 will additionally
choose t−1 elements and sends their identifies together with j
to S1. In this case, [[W j ]] will be accessed with other (t − 1)
[[Wi ]]’s, where i �= j . Meanwhile, in the refinement stage,
S1 will randomly choose (t − 1) ∗ nq dummy identifies D =
{idq,i}(t−1)∗nq

i=1 and sends them to S2 with [[B�]]. In this case,
each candidate set is accessed with (t − 1) sets. Our scheme
achieves t-access pattern unlinkability. �

VII. PERFORMANCE EVALUATION

This section shows the experimental results of our scheme
in computational costs and communication overheads.

A. Experiment Setting

The scheme prototype was implemented in Java and evalu-
ated on a workstation with Intel(R) Xeon(R) Gold 6226R CPU,
251GB RAM, and Ubuntu 20.04 operating system. Parameters
are set as kM = 13, kr = 80, kL = 80, kp = 1024,
kq = 236896, and t = 2. When the multiplicative depth in
our scheme is larger than the maximum multiplicative depth
of the SHE scheme, we will call the bootstrapping protocol in
[19] to remove noise in the encrypted data. The evaluation
was performed utilizing a real Jeter dataset [37] that has
ratings of 100 jokes from 24,938 users. Each rating ranges
from −10 to 10. We transform each user’s ratings into a
joke set containing all jokes with the user’s ratings greater
than 7. In the following, we describe the experimental results
of computational costs and communication overheads.

B. Computational Costs

We evaluate the computational costs of SetRkNN with
respect to data outsourcing, token generation, and set RkNN
query processing.

1) Data Outsourcing: The graph in Fig. 2(a) investigates
the impact of n and kmax on the computational costs of data
outsourcing. As the increase of n, the data outsourcing time
sharply grows. In contrast, the increase of kmax only leads
to a slight gradual growth of the data outsourcing time. The
experimental results are expected because n affects both the

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:56:10 UTC from IEEE Xplore.  Restrictions apply. 



900 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 3. Communication overheads evaluation. (a) Encrypted dataset transmission with n and kmax; (b) Tokens transmission with |Q|; (c) Query processing
transmission with n, where k = kmax = 1; (d) Query processing transmission with k, where n = 10000 and kmax = 5; (e) Query processing transmission
with kmax, where n = 10000 and k = 1.

index building time and dataset encryption time while kmax
only affects index building time.

2) Token Generation: The graph in Fig. 2(b) explores the
impact of |Q| on the computational costs of token generation
in the filter stage and refinement stage, respectively. As shown
in Fig. 2(b), the filter and refinement tokens generation time
has an expected increase when |Q| becomes larger. The filter
token generation is about 1× faster than the refinement token
generation because each element of Q corresponds to one SHE
ciphertext in the filter token and two SHE ciphertexts in the
refinement token.

3) Set RkNN Query Processing: The graph in Fig. 2 studies
the impact of n, k, and kmax on the computational costs of
query processing under the setting of |Q| = 5. Meanwhile,
we compare the query processing time of our scheme with that
of a naive solution that handles set RkNN queries by accessing
all sets in the dataset and using our refinement protocol to
do the verification. The graph in Fig. 2(c) indicates that the
query processing time generally increases as n gets larger,
but it fluctuates. For example, the query processing time in
n = 6000 is shorter than that in n = 10000. The logic behind
the fluctuation is that the query time heavily relies on the index
of the dataset. However, the size and structure of the index
are closely related to the dataset’s features, e.g., the similarity
values between set records will affect the resulting set ψ(Si ).
The graph in Fig. 2(d) shows a definitely increasing trend in
the query processing time with the growth of k. For the same
query request, when k increases, the number of records in the
query answer will become larger. As a result, the filter and
refinement costs will increase. The graph in Fig. 2(e) tells

us the query processing time increases with the growth of
kmax. For the same dataset, when kmax becomes larger, the
index will also expand. Each element will be associated with
more entries, which will lead to an increase in filter costs. The
most notable observation is that Fig. 2 indicates the definite
superiority of our scheme in comparison to the naive solution
in terms of computational costs.

C. Communication Overheads

We evaluate the communication overheads of our scheme in
encrypted dataset transmission, tokens transmission, and query
processing transmission between two servers.

1) Encrypted Dataset Transmission: The graph in Fig. 3(a)
investigates the impact of n and kmax on the transmission
overhead of the encrypted dataset. As the increase of n, the
size of the encrypted dataset sharply grows, and the increase
of kmax only leads to a slight gradual growth of the dataset
transmission overhead. The experimental results are expected
because n affects the size of the index and dataset while kmax
only affects the size of the index.

2) Tokens Transmission: The graph in Fig. 3(b) explores
the impact of |Q| on the transmission overhead of filter tokens
and refinement tokens. As shown in Fig. 3(b), the filter and
refinement tokens transmission overheads increase when |Q|
becomes larger. The size of the filter token is half of that of the
refinement token because each element of Q corresponds to
one SHE ciphertext in the filter token and two SHE ciphertexts
in the refinement token.

3) Query Processing Transmission: The graph in Fig. 3
studies the impact of n, k, and kmax on the transmission

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:56:10 UTC from IEEE Xplore.  Restrictions apply. 



ZHENG et al.: SetRkNN: EFFICIENT AND PRIVACY-PRESERVING SET REVERSE kNN QUERY IN CLOUD 901

overhead of query processing between two servers under the
setting of |Q| = 5. Meanwhile, we compare the transmission
overhead of our scheme with that of the naive solution. The
graph in Fig. 3(c) indicates that the query processing time
generally increases as n gets larger, but it fluctuates. For
example, the query transmission overhead in n = 6000 is
smaller than that in n = 10000. The logic behind the
fluctuation is the same as that in the query processing time
with n. The graph in Fig. 3(d) shows an increasing trend of
the transmission overhead with the growth of k. For the same
query request, when k increases, the number of records in the
query answer will become larger. As a result, the transmission
overheads in the filter and refinement stages will increase. The
graph in Fig. 3(e) tells us the transmission overhead increases
with the growth of kmax. For the same dataset, when kmax
becomes larger, the index will also expand. Each element will
be associated with more entries, leading to an increase in
transmission overheads in the filter stage. The most notable
observation is that Fig. 3 indicates the superiority of our
scheme over the naive solution in communication overheads.

VIII. RELATED WORKS

In this work, we focus on studying privacy-preserving set
RkNN queries over encrypted data. In the following, we review
some works that are closely related to our work.

A. Privacy-Preserving RkNN Query

Du et al. [9] proposed a privacy-preserving reverse NN
query scheme in location-based services over a bichromatic
dataset. The scheme translates both dataset records and query
records into rectangles for data privacy and introduced the
concept of “Voronoi cell for regions” to improve query
efficiency. However, the “Voronoi cell for regions” index
is only applicable to two-dimensional datasets. Meanwhile,
since both dataset and query requests are anonymized into
rectangles, the query results are approximate. Lin et al. [12]
proposed a privacy-preserving reverse NN query scheme in the
road network. This scheme utilizes a network-based Voronoi
cell to index the dataset for improving query efficiency
and anonymizes query points into related regions to pro-
tect query privacy. However, this scheme is only applicable
to location data. Pournajaf et al. [10] employed a private
information retrieval protocol to design a privacy-preserving
RkNN query scheme, which retrieves query results through
multiple rounds of PIR protocols. This scheme designs an
RkNN-HG index to reduce the number of rounds. However,
it does not protect dataset privacy and is only applicable to
location data. Li et al. [11] proposed a privacy-preserving
reverse NN query scheme based on Delaunay Triangulation,
structure encryption, and reference-locked order-preserving
encryption. It can support dynamic updates of the dataset.
Although it can protect data privacy and query privacy, it is
only suitable for two-dimensional data. Tzouramanis and
Manolopoulos [13] presented an RkNN query scheme over
encrypted multi-dimensional data. This scheme uses a secure
SS-tree to index the data for improving query efficiency, but
it only supports low-dimensional data and cannot support set
data.

B. Privacy-Preserving Jaccard Based Set kNN Query

Singh et al. [14] proposed a secure Jaccard similarity cal-
culation method. This scheme randomizes all elements of set
records by multiplying them with the same random number r .
Then, it uses a public-key encryption scheme to encrypt all
set records and outsources the ciphertexts to the cloud. The
cloud server with a secret key decrypts all ciphertexts and
performs Jaccard similarity computation over randomized set
records. However, this scheme leaks the relationship between
set records and is not secure. Blundo et al. [15] utilized a
private set intersection technique to design a secure two-party
Jaccard similarity calculation protocol, but it is not suitable
for the outsourced scenario. Le and Phuong [16] proposed
a secure Jaccard similarity based kNN query scheme based
on a somewhat homomorphic encryption scheme [38] in a
two-server model. Using homomorphic properties, one server
computes the intersection and cardinality sum of any two set
records. The other server with a secret key decrypts these data
and obtains the query result. Nevertheless, this scheme leaks
the intersection and cardinality values of set records to the
cloud server, which will violate data privacy.

Besides, set records can be transformed into binary vectors,
and set similarity computation can be achieved using secure
Euclidean distance computation based protocols [27]. As a
result, some privacy-preserving Euclidean distance based kNN
query schemes are applicable to implement set kNN queries.
Such schemes should not introduce data structures because
data structures for Euclidean distance are not suitable for
sets. Specifically, Wong et al. [17] designed an asymmet-
ric scalar-product-preserving encryption (ASPE) to achieve
Euclidean distance based kNN query, but it is not KPA
secure. Zhang et al. [18] integrated Paillier homomorphic
encryption to enhance the security of the ASPE scheme.
Still, it is secure when the adversary cannot access the
plaintext of any encrypted query. Thus, it is not a real
KPA secure scheme. Zheng et al. [19] proposed a modified
ASPE (MASPE) scheme to strengthen the ASPE scheme to
be KPA secure. Elmehdwi et al. [20] proposed a secure kNN
query scheme by using homomorphic encryption to design
bit-wise secure multiplication, secure minimum, etc. The
scheme has strong security but is computationally inefficient.
Wu et al. [21] proposed integer-based Euclidean distance
computation and data comparison protocols. It is more com-
putationally efficient than the scheme in [20]. Unfortunately,
when set records are transformed into vectors, the size of
vectors is equal to the number of elements in all set records,
which is a large number. Meanwhile, set kNN queries have to
be processed by linear traversing. Thus, the solutions above
are computationally inefficient.

In addition, Zhan et al. [4] proposed a secure kNN clas-
sification scheme over the vertically distributed dataset. The
scheme is a multi-party computation scheme and designed
based on the Paillier homomorphic encryption scheme [39].
Shaneck et al. [3] introduced a secure nearest neighbor search
scheme over the horizontally distributed dataset. The scheme
is also a multi-party computation scheme and designed
based on secure multi-party computation primitives, includ-
ing secure Euclidean distance computation, secure compar-
ison, and secure division. However, the schemes in [4]

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:56:10 UTC from IEEE Xplore.  Restrictions apply. 



902 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

and [3] are multi-party computation schemes with verti-
cally/horizontally distributed datasets and are not applica-
ble to the outsourced scenario considered in our scheme.
Meanwhile, some privacy-preserving query schemes have been
proposed for other query types, including predication query
[8], skyline query [6], and aggregation query [7]. Specifically,
Gilad-Bachrach et al. [8] proposed a CryptoNets framework
to protect the privacy of neural networks based classifica-
tion using the leveled homomorphic encryption technique.
Benefiting from the homomorphic properties, the proposed
scheme is not only privacy-preserving but also computationally
accurate. Liu et al. [6] proposed a secure skyline query scheme
over encrypted data in the cloud. In this scheme, the authors
first introduced a secure dominance protocol based on the
Paillier homomorphic encryption [39] and then designed data
partitioning and lazy merging optimization methods to reduce
the computational costs of skyline query. Zhang et al. [7]
proposed a privacy-preserving aggregate query scheme to
select an optimal location for query users in road networks.
In this scheme, the authors first designed two secure and
efficient bit-wise addition and comparison circuits and then
introduced a privacy-preserving aggregate query scheme based
on these two circuits. However, since the schemes in [6], [8],
and [7] were designed for specific query types and are not
applicable to the RkNN query over encrypted data.

Different from existing schemes, our scheme aims to
achieve efficient and privacy-preserving set RkNN queries
over encrypted data, which is the first work for set RkNN
queries.

IX. CONCLUSION

In this paper, we have proposed an efficient and private
set RkNN query scheme in the outsourced scenario. We first
leveraged the prefix and length filters of Jaccard similarity
to design an inverted prefix index and utilized this index to
support set RkNN queries with sublinear search efficiency.
Then, based on SHE and PHE schemes, we introduced OLTC
and OGTC protocols. Based on them, we further designed
our private filter/refinement protocols to protect the privacy of
index searching and candidate records refinement. After that,
we proposed our scheme based on the private filter/refinement
protocols and elaborately designed our scheme to guarantee
t-access pattern unlinkability. The simulation-based security
proof shows that our scheme can protect data privacy and
access pattern privacy. Experimental results indicate that our
scheme is more efficient in computational costs and commu-
nication overheads than the naive solution.

REFERENCES

[1] Y. Zheng, R. Lu, Y. Guan, S. Zhang, J. Shao, and H. Zhu, “Efficient and
privacy-preserving similarity query with access control in eHealthcare,”
IEEE Trans. Inf. Forensics Security, vol. 17, pp. 880–893, 2022.

[2] Y. Zheng et al., “PMRQ: Achieving efficient and privacy-preserving
multidimensional range query in eHealthcare,” IEEE Internet Things J.,
vol. 9, no. 18, pp. 17468–17479, Sep. 2022.

[3] M. Shaneck, Y. Kim, and V. Kumar, “Privacy preserving nearest
neighbor search,” in Proc. 6th IEEE Int. Conf. Data Mining Workshops
(ICDMW), Jan. 2006, pp. 247–276.

[4] J. Z. Zhan, L. Chang, and S. Matwin, “Privacy preserving K-nearest
neighbor classification,” Int. J. Netw. Secur., vol. 1, no. 1, pp. 46–51,
2005.

[5] Y. Zheng, R. Lu, and J. Shao, “Achieving efficient and privacy-
preserving k-NN query for outsourced eHealthcare data,” J. Med. Syst.,
vol. 43, no. 5, p. 123, May 2019.

[6] J. Liu, J. Yang, L. Xiong, and J. Pei, “Secure and efficient skyline
queries on encrypted data,” IEEE Trans. Knowl. Data Eng., vol. 31,
no. 7, pp. 1397–1411, Jul. 2019.

[7] S. Zhang, S. Ray, R. Lu, Y. Zheng, Y. Guan, and J. Shao,
“PPAQ: Privacy-preserving aggregate queries for optimal location selec-
tion in road networks,” IEEE Internet Things J., vol. 9, no. 20,
pp. 20178–20188, Oct. 2022.

[8] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “CryptoNets: Applying neural networks to encrypted data
with high throughput and accuracy,” in Proc. Int. Conf. Mach. Learn.
(ICML), in (JMLR Workshop and Conference Proceedings), vol. 48,
2016, pp. 201–210.

[9] Y. Du, “Privacy-aware RNN query processing on location-based
services,” in Proc. Int. Conf. Mobile Data Manage., May 2007,
pp. 253–257.

[10] L. Pournajaf, F. Tahmasebian, L. Xiong, V. Sunderam, and C. Shahabi,
“Privacy preserving reverse k-nearest neighbor queries,” in Proc. 19th
IEEE Int. Conf. Mobile Data Manage. (MDM), Jun. 2018, pp. 177–186.

[11] X. Li, T. Xiang, S. Guo, H. Li, and Y. Mu, “Privacy-preserving
reverse nearest neighbor query over encrypted spatial data,” IEEE Trans.
Services Comput., vol. 15, no. 5, pp. 2954–2968, Sep. 2022.

[12] X. Lin, L. Zhou, P. Chen, and J. Gu, “Privacy preserving reverse
nearest-neighbor queries processing on road network,” in Proc. XMLDM,
vol. 7419, 2012, pp. 19–28.

[13] T. Tzouramanis and Y. Manolopoulos, “Secure reverse k-nearest neigh-
bours search over encrypted multi-dimensional databases,” in Proc. 22nd
Int. Database Eng. Appl. Symp. (IDEAS), 2018, pp. 84–94.

[14] M. D. Singh, P. R. Krishna, and A. Saxena, “A privacy preserving Jac-
card similarity function for mining encrypted data,” in Proc. TENCON
IEEE Region 10 Conf., Nov. 2009, pp. 1–4.

[15] C. Blundo, E. D. Cristofaro, and P. Gasti, “EsPRESSo: Efficient
privacy-preserving evaluation of sample set similarity,” in Proc. SETOP,
vol. 7731, 2012, pp. 89–103.

[16] T. T. N. Le and T. V. X. Phuong, “Privacy preserving Jaccard similarity
by cloud-assisted for classification,” Wireless Pers. Commun., vol. 112,
no. 3, pp. 1875–1892, Jun. 2020.

[17] W. K. Wong, D. W.-L. Cheung, B. Kao, and N. Mamoulis, “Secure kNN
computation on encrypted databases,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, Jun. 2009, pp. 139–152.

[18] Z. Zhang, K. Wang, C. Lin, and W. Lin, “Secure top-k inner product
retrieval,” in Proc. 27th ACM Int. Conf. Inf. Knowl. Manage., Oct. 2018,
pp. 77–86.

[19] Y. Zheng, R. Lu, Y. Guan, J. Shao, and H. Zhu, “Efficient and privacy-
preserving similarity range query over encrypted time series data,” IEEE
Trans. Dependable Secure Comput., vol. 19, no. 4, pp. 2501–2516,
Jul. 2022.

[20] Y. Elmehdwi, B. K. Samanthula, and W. Jiang, “Secure k-
nearest neighbor query over encrypted data in outsourced envi-
ronments,” in Proc. IEEE 30th Int. Conf. Data Eng., Mar. 2014,
pp. 664–675.

[21] W. Wu, J. Liu, H. Rong, H. Wang, and M. Xian, “Efficient k-nearest
neighbor classification over semantically secure hybrid encrypted cloud
database,” IEEE Access, vol. 6, pp. 41771–41784, 2018.

[22] H. Mahdikhani, R. Lu, Y. Zheng, J. Shao, and A. A. Ghorbani, “Achiev-
ing O(log3n) communication-efficient privacy-preserving range query in
fog-based IoT,” IEEE Internet Things J., vol. 7, no. 6, pp. 5220–5232,
Jun. 2020.

[23] Y. Guan, R. Lu, Y. Zheng, S. Zhang, J. Shao, and G. Wei, “Toward
privacy-preserving cybertwin-based spatiotemporal keyword query for
ITS in 6G era,” IEEE Internet Things J., vol. 8, no. 22, pp. 16243–16255,
Nov. 2021, doi: 10.1109/JIOT.2021.3096674.

[24] M.-S. Lacharité, B. Minaud, and K. G. Paterson, “Improved reconstruc-
tion attacks on encrypted data using range query leakage,” in Proc.
IEEE Symp. Secur. Privacy (SP), San Francisco, CA, USA, May 2018,
pp. 297–314.

[25] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks
against searchable encryption,” in Proc. 22nd ACM SIGSAC Conf.
Comput. Commun. Security, 2015, pp. 668–679.

[26] Z. Zhang, K. Wang, W. Lin, A. W.-C. Fu, and R. C.-W. Wong,
“Practical access pattern privacy by combining PIR and oblivious
shuffle,” in Proc. 28th ACM Int. Conf. Inf. Knowl. Manage., Nov. 2019,
pp. 1331–1340.

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:56:10 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/JIOT.2021.3096674


ZHENG et al.: SetRkNN: EFFICIENT AND PRIVACY-PRESERVING SET REVERSE kNN QUERY IN CLOUD 903

[27] Y. Zheng, R. Lu, Y. Guan, J. Shao, and H. Zhu, “Achieving efficient
and privacy-preserving exact set similarity search over encrypted data,”
IEEE Trans. Dependable Secure Comput., vol. 19, no. 2, pp. 1090–1103,
Mar. 2022.

[28] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and
D. Boneh, “Privacy-preserving matrix factorization,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur. (CCS), 2013, pp. 801–812.

[29] Y. Zheng, H. Duan, and C. Wang, “Learning the truth privately
and confidently: Encrypted confidence-aware truth discovery in mobile
crowdsensing,” IEEE Trans. Inf. Forensics Security, vol. 13, no. 10,
pp. 2475–2489, Oct. 2018.

[30] S. Rane and P. T. Boufounos, “Privacy-preserving nearest neighbor
methods: Comparing signals without revealing them,” IEEE Signal
Process. Mag., vol. 30, no. 2, pp. 18–28, Mar. 2013.

[31] D. Amagata, T. Hara, and C. Xiao, “Dynamic set kNN self-join,” in
Proc. IEEE 35th Int. Conf. Data Eng. (ICDE), Apr. 2019, pp. 818–829.

[32] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully homo-
morphic encryption without bootstrapping,” in Innovations in Theo-
retical Computer Science. Cambridge, MA, USA: ACM, Jan. 2012,
pp. 309–325.

[33] J. H. Cheon, A. Kim, M. Kim, and Y. S. Song, “Homomorphic encryp-
tion for arithmetic of approximate numbers,” in Proc. Adv. Cryptol. ASI-
ACRYPT 23rd Int. Conf. Theory Appl. Cryptol. Inf. Security, in Lecture
Notes in Computer Science, vol. 10624, Dec. 2017, pp. 409–437.

[34] S. D. Galbraith, S. W. Gebregiyorgis, and S. Murphy, “Algorithms for
the approximate common divisor problem,” IACR Cryptol. ePrint Arch.,
vol. 19, p. 215, Aug. 2016.

[35] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homo-
morphic encryption over the integers,” in Advances in Cryptology—
EUROCRYPT (Lecture Notes in Computer Science), vol. 6110.
Monaco: Springer, 2010, pp. 24–43.

[36] A. Becker, L. Ducas, N. Gama, and T. Laarhoven, “New directions
in nearest neighbor searching with applications to lattice sieving,” in
Proc. 27th Annu. ACM-SIAM Symp. Discrete Algorithms, Jan. 2016,
pp. 10–24.

[37] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, “Eigentaste: A
constant time collaborative filtering algorithm,” Inf. Retr., vol. 4, no. 2,
pp. 133–151, Jul. 2001.

[38] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” IACR Cryptol. ePrint Arch., May 2012, p. 144.

[39] P. Paillier, “Public-key cryptosystems based on composite degree residu-
osity classes,” in Advances in Cryptology—EUROCRYPT (Lecture Notes
in Computer Science), vol. 1592. Prague, Czech Republic: Springer,
May 1999, pp. 223–238.

Yandong Zheng (Member, IEEE) received the M.S.
degree from the Department of Computer Science,
Beihang University, China, in 2017, and the Ph.D.
degree from the Department of Computer Science,
University of New Brunswick, Canada, in 2022.

Since 2022, she has been an Associate Professor
with the School of Cyber Engineering, Xidian Uni-
versity. Her research interests include cloud comput-
ing security, big data privacy, and applied privacy.

Rongxing Lu (Fellow, IEEE) received the Ph.D.
degree from the Department of Electrical and Com-
puter Engineering, University of Waterloo, Canada,
in 2012. He worked as a Post-Doctoral Fellow at
the University of Waterloo from May 2012 to April
2013. He is currently the Mastercard IoT Research
Chair, a University Research Scholar, and an Asso-
ciate Professor with the Faculty of Computer Sci-
ence (FCS), University of New Brunswick (UNB),
Canada. Before that, he worked as an Assistant
Professor at the School of Electrical and Electronic

Engineering, Nanyang Technological University (NTU), Singapore, from
April 2013 to August 2016. His research interests include applied cryp-
tography, privacy enhancing technologies, and the IoT-big data security and
privacy. He also serves as the Chair of IEEE Communications and Information
Security Technical Committee (ComSoc CISTC) and the Founding Co-Chair
of IEEE TEMS Blockchain and Distributed Ledgers Technologies Technical
Committee (BDLT-TC).

Hui Zhu (Senior Member, IEEE) received the B.Sc.
degree from Xidian University, Xian, China, in 2003,
the M.Sc. degree from Wuhan University, Wuhan,
China, in 2005, and the Ph.D. degree from Xidian
University, in 2009.

He was a Research Fellow at the School of Electri-
cal and Electronics Engineering, Nanyang Techno-
logical University, Singapore, in 2013. Since 2016,
he has been a Professor with the School of Cyber
Engineering, Xidian University. His current research
interests include applied cryptography, data security,
and privacy.

Songnian Zhang received the M.S. degree from
Xidian University, China, in 2016. He is currently
pursuing the Ph.D. degree with the Faculty of
Computer Science, University of New Brunswick,
Canada. His research interests include cloud com-
puting security, big data query, and query privacy.

Yunguo Guan is currently pursuing the Ph.D.
degree with the Faculty of Computer Science, Uni-
versity of New Brunswick, Canada. His research
interests include applied cryptography and game
theory.

Jun Shao (Senior Member, IEEE) received the
Ph.D. degree from the Department of Computer
and Engineering, Shanghai Jiao Tong University,
Shanghai, China, in 2008.

He was a Post-Doctoral Fellow at the School
of Information Sciences and Technology, Penn-
sylvania State University, Pennsylvania, PA, USA,
from 2008 to 2010. He is currently a Professor
with the School of Computer and Information Engi-
neering, Zhejiang Gongshang University, Hangzhou,
China. His current research interests include network
security and applied cryptography.

Fengwei Wang (Member, IEEE) received the B.Sc.
degree from Xidian University in 2016 and the Ph.D.
degree from Xidian University in 2021.

In 2019, he was at the Faculty of Computer
Science, University of New Brunswick, as a Visiting
Scholar. Since 2021, he has been a Lecturer with
the School of Cyber Engineering, Xidian University,
Xi’an, China. His research interests include the areas
of applied cryptography, cyber security, and privacy.

Hui Li (Member, IEEE) received the B.Sc. degree
from Fudan University in 1990, and the M.Sc. and
Ph.D. degrees from Xidian University, China, in
1993 and 1998, respectively.

Since 2005, he has been a Professor with the
School of Telecommunication Engineering, Xidian
University. His research interests are in the areas of
cryptography, wireless network security, information
theory, and network coding.

Dr. Li served as the TPC Co-Chair of ISPEC
2009 and IAS 2009, the General Co-Chair of

E-Forensic 2010, ProvSec 2011, and ISC 2011, and the Honorary Chair of
NSS 2014 and ASIACCS 2016.

Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:56:10 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


